Area under a Curve Ind urea under $y=x-2$ from $x=2$ to $x=4$.

$$
\begin{aligned}
& y=x-2 \\
& x=0 \quad y=-2 \\
& y=0 \quad x=2 .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{2}^{4}(x-2) d x \\
& {\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}} \\
& \frac{16}{2}-2(4)-\left(\frac{4}{2}-4\right) \\
& 8-8-(2-4)=2 \text { sq cents }
\end{aligned}
$$

Area under $y=x-3$ from $x=1$ to $x=5$.

$$
\int_{1}^{5}(x-3) d x=0
$$

Ans 4 sq cents.
Fnd aren betusen $y=x^{2}-4 x$ and x-axs from $x=3$ to $x=5$.

$$
\begin{aligned}
& x^{2}-4 x=0 \\
& x(x-4)=0 \\
& x=0 \quad x=4
\end{aligned}
$$

$$
A_{1}=\left|\int_{3}^{4}\left(x^{2}-4 x\right) d x\right|
$$

$$
\begin{gathered}
\left|\left[\frac{x^{3}}{3}-\frac{4^{2} x^{2}}{4}\right]_{3}^{4}\right| \\
\left|\left[\frac{x^{3}}{3}-2 x^{2}\right]_{3}^{4}\right| \\
\left|\frac{64}{3}-32-\left(\frac{27}{3}-18\right)\right| \\
=\frac{\frac{5}{3}}{A_{2}}=\int_{4}^{5}\left(x^{2}-4 x\right) d x \\
\left.\int_{\frac{125}{3}}^{3}-2 x^{2}\right]_{4}^{5} \\
\frac{52}{3}-\left(\frac{64}{3}-32\right)=\frac{7}{3} \\
\frac{5}{3}+\frac{7}{3}=4 \text { squats. }
\end{gathered}
$$

Double Shapes.
Fid the area between $y=x^{2}$ and $y=x$.

Pouts of untersection

$$
\begin{aligned}
& x^{2}=x \\
& x^{2}-x=0 \\
& x(x-1)=0 \\
& x=0 \quad x=1 \\
& y=x^{2} \quad y=x \\
& a=0 \quad y=0 \quad \begin{array}{l}
x=0 \quad y=0
\end{array} \\
& \text { 有 } y=x \\
& y=x \\
& x=0 \quad y=0 \\
& x=1 \quad y=1 \\
& \int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x \\
& {\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{6} \text { and }}
\end{aligned}
$$

The line $2 x-y-10=0$ is a tangent to the curve $y=x^{2}-9$, as shown. The shaded region is bounded by the line, the curve and the x-axis. Calculate the area of this region.

$$
\begin{aligned}
& x^{2}-9=0 \\
& x^{2}=9 \\
& x= \pm 3
\end{aligned}
$$

$$
x^{2}-9=2 x-10
$$

$$
\begin{aligned}
& x^{2}-2 x+1=0 \\
& (x-1)(x-1)=0
\end{aligned}
$$

$$
x-1=0
$$

$$
\left|\int_{1}^{5}(2 x-10) d x-\int_{1}^{x=1}\left(x^{2}-9\right) d x\right|
$$

$$
\left.1-16-\left[\frac{x^{3}}{3}-9 x\right]_{1}^{3}\right]
$$

a is a real number such that $0<a<8$.
The line $y=a x$ intersects the curve $y=x(8-x)$ at $x=0$ and at $x=p$.
(i) Show that $p=8-a$.
(ii) Show that the area between the curve and the line is $\frac{p^{3}}{6}$ square units.

$$
\begin{gathered}
y=x(8-x) \quad y=a x \\
x(d-x)=a x \\
x=p \quad 8-x=a \Rightarrow a=f-p \\
x-a=p \\
\int_{0}^{p}\left(8 x-x^{2}\right)-\int_{0}^{p} a x d x \\
{\left[\frac{8 x^{2}}{2}-\frac{x^{3}}{3}-\frac{a x^{2}}{2}\right]_{0}^{p}} \\
0\left[\frac{4 p^{2}-\frac{p^{3}}{3}-\frac{a p^{2}}{2}}{4}\right. \\
4 p^{2}-\frac{p^{3}}{3}-\frac{p^{2}(f-p)}{2} \\
\frac{2 u p^{2}-2 p^{3}-3 p^{2}(8-p)}{6}=\frac{p^{3}}{6}
\end{gathered}
$$

Let $f(x)=x^{3}-3 x^{2}+5$.
L is the tangent to the curve $y=f(x)$ at its local maximum point.

Find the area enclosed between L and the curve.

$$
\begin{aligned}
y= & x^{3}-3 x^{2}+5 \\
\frac{d y}{d x}= & 3 x^{2}-6 x=0 \\
& x(x-2)=0 \\
x=0 \quad y=5 \quad & x=0 \\
x \quad & (0.5)
\end{aligned}
$$

$$
15-\int^{3}\left(x^{3}-3 x^{2}+5\right) d x
$$

The diagram shows the curve $y=4-x^{2}$ and the line $2 x+y-1=0$.

Calculate the area of the shaded region enclosed by the curve and the line.

$$
\begin{aligned}
& h-x^{2}=0 \\
& h=x^{2}
\end{aligned}
$$

$$
x= \pm 2
$$

$$
2 x+y-1=0
$$

$$
y=0 x=\frac{1}{2}
$$

$$
y=1-2 x
$$

$$
\begin{gathered}
1-2 x=4-x^{<} \\
x^{2}-2 x-3=0 \\
x=3 \quad x=-1
\end{gathered}
$$

$$
A_{2}=\left|\int_{\frac{1}{2}}^{3}(1-2 x) d_{2} \int^{3}\left(1-x^{2}\right) d x\right|
$$

