Ccrole where we cunnt fud centre.

Crde is $x^{2}+y^{2}+2 g x+2 f y+c=0$
Fnd corde which cuntans $(0,0),(-2,4)$ and $(-1,7)$

$$
\begin{aligned}
& x^{2}+y^{2}+2 g x+2 f_{y}+c=0 \\
& \text { Catre }(-g \cdot-f) \\
& r=\sqrt{g^{2}+f^{2}-c}
\end{aligned}
$$

$$
\begin{aligned}
& (0,0) \\
& (-2,4) \\
& (-1,7)
\end{aligned}
$$

$$
c=0
$$

$$
\begin{gathered}
4+16-4 g+8 f=0 \\
-4 y+8 f=-20 \\
g-2 l=5
\end{gathered}
$$

$$
\begin{gathered}
9-2 f=5 \\
1+49-2 y+14 f=0 \\
-2 g+14 f=-50 \\
\frac{9-2 f=5}{-19+7 f=-25} \\
5 f=20 \\
f=4 \\
9-8=5 \quad g=13 \\
x^{2}+y^{2}+26 x+8 y=0
\end{gathered}
$$

A circle passes through the points $a(8,5)$ and $b(9,-2)$. The centre of the circle lies on the line $2 x-3 y-7=0$.
(i) Find the equation of the circle.

$$
\left(\begin{array}{l}
8,5): 64+25+16 g+10 f+c=0 \\
y_{y}
\end{array}\right.
$$

Sum Eq between (\because B α ("I)

$$
\begin{aligned}
16 y+10 f+c & =-84 \\
-18 g \pm 4 f+c & = \pm 85 \\
-2 y+14 f & =-4 \\
g-7 f & =2 \ldots \ldots
\end{aligned}
$$

$(-9,-t)$

$$
\begin{gathered}
\text { ito } 2 x-3 y=7 \\
-2 y+3 f=7 \quad-(1 u) \\
9-7 f=2 \ldots(14) \\
-2 g+3 f=7 \\
2 y-14 f=4 \\
-11 f=11 \\
f=-1
\end{gathered}
$$

$$
\begin{aligned}
& x^{2}+y^{2}+2 y x+2 f y+c=0 \\
& (9,-2): 81+4+18 g-4)+c=0 \\
& 18 g-4 f+c=-85-(1) \\
& 16 y+10 f+c=-89-\left({ }^{111}\right)
\end{aligned}
$$

Sub unto (w) $\quad g=-5$

$$
\begin{aligned}
16 g+10 f+c & =-87 \\
-80-10+c & =-89 \\
c & =1 \\
x^{2}+y^{2}-10 x-2 y+1 & =0
\end{aligned}
$$

Find corde throngh $(3,-5)$
which hus $3 x+2 y=12$ as tanjert at $(4,0)$.

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

$$
\begin{aligned}
& \text { Centre }(-g, f) \\
& r=\sqrt{g^{2}+f^{2}-c}
\end{aligned}
$$

$$
(3,-5)
$$

$$
9+25+6 g-10 f+c=0
$$

$(4,0)$

$$
6 y-10 f+c=-34
$$

$$
\begin{gathered}
16+8 y+c=0 \\
8 g+0 f+c=-16 \\
6 g-10 f+c=-32 \\
-8 q+0 f+c= \pm 16 \\
\hline-2 g-10 f=-18 \\
g+5 f=
\end{gathered}
$$

Creen Lae

$$
\begin{array}{ll}
2 x-3 y=k & (4,0) \\
2 x-3 y=8 & (-9,-f)
\end{array}
$$

$$
\begin{aligned}
& -2 g+3 f=8 \\
& 2(a+5 f=9) \\
& \Rightarrow \begin{aligned}
2 g+10 f & =18 \\
13 f & =26 \\
f & =2
\end{aligned} \\
& g=-1 \\
& 8 y+c=-16 \\
& -8+c=-16 \quad c=-8 \\
& x^{2}+y^{2}-2 x+4 y-8=0
\end{aligned}
$$

A circle of radius length $\sqrt{20}$ contains the point $(-1,3)$. Its centre lies on the line $x+y=0$.

Find the equations of the two circles that satisfy these conditions.

$$
c=8 y-10
$$

$$
\begin{gathered}
-2 g+6 f+c=-10 \\
-2 g-6 g+c=-10 \\
c=8 g-10 \\
g^{2}+f^{2}-c=20 \\
g^{2}+g^{2}-8 g+10-20=0 \\
2 g^{2}-8 y-10=0 \\
g^{2}-4 y-5=0 \\
(g+1)(g-5)=0 \\
g=-1 \quad g=5 \\
f=1 \quad f=-5 \\
c=-18 \quad c=30 \\
x^{2}+y^{2}+2 x-2 y-18=0 \quad \\
x^{2}+y^{2}+10 x-10 y+30=0
\end{gathered}
$$

