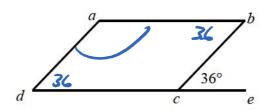
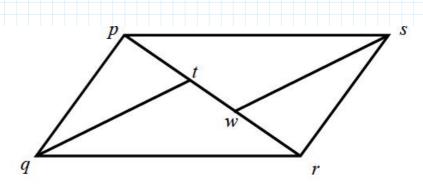


abcd is a parallelogram with [dc] produced to e and $|\angle bce| = 36^{\circ}$, as shown.

Find (i) $|\angle abc|$,

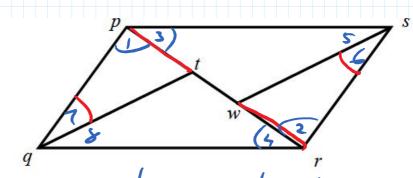

(ii) ∠ |∠bad|.

abcd is a parallelogram with [dc] produced to e and $|\angle bce| = 36^{\circ}$, as shown.



- (i) |\(\alpha abc \), = 36°
- (ii) ∠ |∠bad |.

In the parallelogram pqrs, the points t and w are on the diagonal [pr] such that

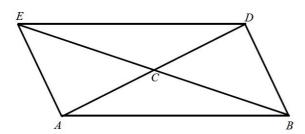

$$|\angle pqt| = |\angle wsr|$$
.

(i) \angle Prove that |pt| = |wr|.

In the parallelogram pqrs, the points t and w are on the diagonal [pr] such that

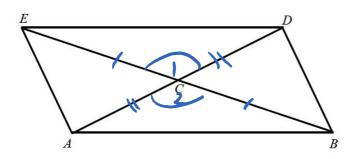
$$|\angle pqt| = |\angle wsr|$$
.

(i) \angle Prove that |pt| = |wr|.


$$|PQ| = |S-1|$$

$$|PQ| = |PQ|$$

$$|PQ| = |$$


O pat = awsr

The quadrilateral ABDE has diagonals [AD] and [BE] intersecting at C. C is the midpoint of both [AD] and [BE].

- (i) \angle Prove that $\triangle ECD$ is congruent to $\triangle ACB$.
- (ii) Hence, prove that ABDE is a parallelogram.

The quadrilateral ABDE has diagonals [AD] and [BE] intersecting at C. C is the midpoint of both [AD] and [BE].

- (i) \angle Prove that $\triangle ECD$ is congruent to $\triangle ACB$.
- (ii)
 Hence, prove that ABDE is a parallelogram.

 $CX_{u-d} = 4$ scals (CEI = (BCI) (ACI = (CDI) (ZII = ICZ) = $\Delta ECD = \Delta ACB$ SAS

Dragenel of a parallelegran breet each other