Tables and Equations
Must use the Index.

Triantánacht

$$
\tan A=\frac{\sin A}{\cos A} \quad \cot A=\frac{\cos A}{\sin A}
$$

$$
\sec A=\frac{1}{\cos A} \quad \operatorname{cosec} A=\frac{1}{\sin A}
$$

Trigonometry

$$
\begin{gathered}
\cos ^{2} A+\sin ^{2} A=1 \\
\sec ^{2} A=1+\tan ^{2} A \\
\cos (-A)=\cos A \\
\sin (-A)=-\sin A \\
\tan (-A)=-\tan A
\end{gathered}
$$

Note: $\tan A$ and $\sec A$ are not defined when $\cos A=0$. $\cot A$ and $\operatorname{cosec} A$ are not defined when $\sin A=0$.
Nola: Bionn $\tan A$ gus $\sec A$ gan sainiu nuair $\cos A=0$.
Bionn $\cot A$ gus $\operatorname{cosec} A$ gan sainiú nuair $\sin A=0$.

A (céimeanna)	0°	90°	180°	270°	30°	45°	60°	A (degrees)
A (raidiain)	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	A (radians)
$\cos A$	1	0	-1	0	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	$\cos A$
$\sin A$	0	1	0	-1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	$\sin A$
$\tan A$	0	-	0	-	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$\tan A$

$$
45^{\circ}
$$

$$
\begin{aligned}
& 1^{2}+1^{2}=\sqrt{2} \\
& \sin 45=\frac{1}{\sqrt{2}} \\
& \operatorname{Cos} 45=\frac{1}{\sqrt{2}} \\
& \operatorname{Tan} 45=1
\end{aligned}
$$

$$
\begin{aligned}
1^{2}+x^{2} & =2^{2} \\
x & =\sqrt{3} \\
\operatorname{Sin} 60 & =\frac{\sqrt{3}}{2} \\
\cos 30 & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

${ }_{1}$ Equaltal sade 2 Bract the angle will -ul be the popadules bisector.

$\operatorname{Sin} A=y$
$\begin{aligned}(x, y) & =(\operatorname{Cos} A, \sin A) \\ \operatorname{Tan} A & =\frac{y}{x}=\frac{\sin A}{\cos A}\end{aligned}$

Learn.

Sin pus silly | $s+$ |
| :---: |
| $\frac{c}{i}-$ |

Tan pus Tum | $C_{i}^{S}-$ |
| :--- |
| $\frac{c}{T} \pm$ |
| S_{i} |

$180-\theta$	0
$\pi-\theta$	θ
$180+\theta$	$360-\theta$
$\pi+\theta$	$2 \pi-\theta$

Solve $\operatorname{Sin} x=-\frac{\sqrt{3}}{2} \quad 0 \leqslant x \leqslant 360^{\circ}$

S	A	$\operatorname{Sin} x=-\frac{\sqrt{3}}{2}$
T	C	Sin is negative

Where is sun negative? $3^{\text {-d }}$ and $4^{\text {th }}$
Drop the sign
$\operatorname{Sin} x=\frac{\sqrt{3}}{2}$ find x
esther with cal or tables.
 $\cos ^{2} A+\sin ^{2} A=1$
$\sec ^{2} A=1+\tan ^{2} A$ $\cos (-A)=\cos A$ $\sin (-A)=-\sin A$
$\tan (-A)=-\tan A$
Nota: Bionn $\tan A$ agus $\sec A$ gan sainiú nuair $\cos A=0 . \quad$ Note: $\tan A$ and $\sec A$ are not defined when $\cos A=0$.
Bionn $\cot A$ agus $\operatorname{cosec} A$ gan sainiú nuair $\sin A=0$. $\quad \cot A$ and $\operatorname{cosec} A$ are not defined when $\sin A=0$.

Lo to Su lue
 $t, \sqrt{\frac{3}{2}}$
ω up $\Rightarrow \theta=60^{\circ}$

$180-\theta$	θ
$\csc +\theta$	$360-\theta$

Answers $x=240^{\circ}$ ar 300°.

$$
\cos \theta=-\frac{\sqrt{3}}{2}, 0 \leq \theta \leq 360^{\circ}
$$

$180-\theta_{S}$	A
$180+\theta_{T}$	C

$$
2^{n d}+3^{\text {nd }} \text { nejation }
$$

$$
\cos \theta=\frac{\sqrt{3}}{2} \Rightarrow 1^{s t} \text { quad }
$$

$$
\theta=30^{\circ} \text { (reforene ang } 6 \text {) }
$$

$$
\begin{aligned}
& \theta=150^{\circ} \\
& \operatorname{Tan} A=\frac{1}{\sqrt{2}} \\
& \pi-\theta \quad \mid l \\
& \pi+\theta \quad i=2 \pi-\theta
\end{aligned}
$$

$$
\therefore \quad 210^{\circ}
$$

$$
0 \leq A \leq 2 \pi
$$

Tan is puostios

$$
\begin{aligned}
& 1^{s t}+3^{-d} \\
& \operatorname{Tan} A=\frac{1}{\sqrt{2}} \\
& A=0.615
\end{aligned}
$$

$$
A=0.62 \quad \text { or } \quad 3.14+0.62
$$

$=0.62 \mathrm{rad}$ or 3.76 radius
$\operatorname{Sin} \theta=\frac{1}{2}$ find $0 \leq \theta \leq 2 \pi$.

$\pi-\theta$		
$\frac{6 \pi}{6}-\theta$		
	5	1
$\frac{6 \pi}{6}+\theta$		
$\pi+\theta$		
$\pi+\theta$		

$$
\begin{aligned}
\sin \theta & =\frac{1}{2} \\
\theta & =\frac{\pi}{6} \text { or } \frac{5 \pi}{6}
\end{aligned}
$$

$\operatorname{Tan} \theta=-1 \quad$ fnd $0 \leq \theta \leq 2 \pi$.

$5 \frac{4 \pi}{A^{2}}-\theta-|$| | |
| :--- | :--- |
| | $\frac{c}{\frac{\delta \pi}{4}}-\theta$ |

$$
\begin{aligned}
& \operatorname{Tan} \theta=1 \\
& \theta=\frac{\pi}{4} \\
& \theta=\frac{3 \pi}{4} \text { or } \frac{7 \pi}{4}
\end{aligned}
$$

Revulutruas.

$$
\begin{aligned}
40 & =400^{\circ}=760 \\
& =40+360 \hat{n} \\
n & =0 \Rightarrow \text { no fill } \\
n=1 & \Rightarrow 1 \text { reverutin } \\
n=2 & \Rightarrow 2 \text { revclution. }
\end{aligned}
$$

$\operatorname{Sin} A=-\frac{\sqrt{3}}{2}$ had A in degrees

where $n \in N \Rightarrow$ number of rotations.
There are called the geneal solutions.
$\operatorname{Tan} \theta=1 \quad$ find θ in radians.

s	$A /$
$\frac{4 \pi}{4}+A$	2

$$
\begin{aligned}
& \theta=\frac{\pi}{4}+2 n \pi \\
& \theta=\frac{5 \pi}{4}+2 n \pi
\end{aligned}
$$

$A=50$ find $\operatorname{Sin} 3 A$.
Frat $\quad 3 A \Rightarrow 3(50)=150$
Second Sulsu $=\frac{1}{2}$.
$\operatorname{Sin} 3 A=\frac{1}{2}$ fund $0 \leq A \leq 180^{\circ}$ $\sec -\theta+\frac{1}{2}$

$$
\begin{aligned}
& 3 A=30^{\circ} \quad 3 A=150 \\
& A=10^{\circ} \quad A=50^{\circ} \\
& 3 A=390 \quad 3 A=510 \\
& A=130^{\circ} \quad A=120^{\circ} \\
& 3 A=720
\end{aligned}
$$

$$
30^{\circ}=390^{\circ}=750=1110
$$

$$
\begin{aligned}
& \cos 2 A=-\frac{1}{2} \text { find } O \leq A \leq 360^{\circ} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tan} 2 A=-\sqrt{3} \quad 0 \leq A \leq \pi \\
& \begin{array}{r|lr}
\frac{3 \pi}{3}-\theta-5 & A & \operatorname{Tan} 2 A \\
\hline 2 & 5 \frac{6 \pi}{3}-\theta & 2 A
\end{array} \\
& \frac{2 \pi}{3}+\frac{6 \pi}{3} \\
& 2 A=\frac{2 \pi}{3} \text { or } \frac{5 \pi}{3} \text { or } \frac{8 \pi}{3} \\
& A=\frac{\pi}{3} \text { or } \frac{5}{6} \pi
\end{aligned}
$$

