Centre $(-g,-f)$
Surplus

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& x^{2}-2 h x+h^{2}+y^{2}-2 k y+k^{2}-r^{2}=0
\end{aligned}
$$

$$
\text { Centre } \quad(-g,-f)
$$

$$
\begin{gathered}
x^{2}+y^{2}+2 g x+2 f y+c=0 \\
c=g^{2}+f^{2}-r^{2} \\
r^{2}=g^{2}+b^{2}-c \\
r=\sqrt{g^{2}+b^{2}-c}
\end{gathered}
$$

Cockle of form $x^{2}+y^{2}+2 y x+2 f y+c=0$
has centre $(-g,-l)$ and $r=\sqrt{g^{2}+l^{2}-c}$
Find centre and sades of

$$
\begin{gathered}
x^{2}+y^{2}+4 x-6 y-7=0 \\
\left.\quad \begin{array}{rl}
\text { Centre } & (-2,3) \\
-5 & -1
\end{array}\right) \\
=\sqrt{9^{2}+1^{2}-c} \quad r=\sqrt{2^{2}+(-3)^{2}+7} \\
= \\
=\sqrt{4+9+7}
\end{gathered}
$$

(11)

$$
\begin{aligned}
& x^{2}+y^{2}-6 x+8 y-1=0 \\
& \text { Centre }(3,-4) \\
& r=\sqrt{9^{2}+l^{2}-} \\
& \sqrt{9+16+1}=\sqrt{26}
\end{aligned}
$$

Find centre and radus of
(1)

$$
x^{2}+y^{2}-6 x+8 y-5=0
$$

Of furm $x^{2}+y^{2}+2 y x+2 f y+c=0$
(1)

$$
x^{2}+y^{2}-6 x+8 y-1=0 .
$$

Catre $(3,-4)$

$$
r=\frac{\sqrt{9^{2}+b^{2}-c}}{\sqrt{9+16+1}=\sqrt{26}}
$$

Find centre and radues of

$$
\text { (1) } \quad x^{2}+y^{2}-6 x+8 y-5=0
$$

Of furm $x^{2}+y^{2}+2 y x+2 f y+c=0$
(II)

$$
r=\sqrt{x^{2}+y^{2}-7 x+3 y-5}=0
$$

$$
\text { Centre }\left(\frac{7}{2},-\frac{3}{2}\right)
$$

$$
\begin{aligned}
r & =\sqrt{\frac{49}{4}+\frac{9}{4}+\frac{20}{4}} \\
& =\frac{78}{4}=\frac{\sqrt{78}}{2}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \text { iv) } \begin{array}{l}
x^{2}+y^{2}-3 x-1=0 \\
\text { Catre } \quad\left(\frac{3}{2}, 0\right) \\
r=\sqrt{\frac{9}{4}+\frac{4}{4}}
\end{array}
\end{aligned}
$$

$$
=\sqrt{\frac{13}{4}}=\frac{\sqrt{13}}{2}
$$

$(3,-1)$ is in $x^{2}+y^{2}-2 x+3 y+k=0$
Fnd the sadves.

$$
\begin{aligned}
& 3^{2}+(-1)^{2}-2(3)+3(-1)+k=0 \\
& 9+1-6-3+k=c
\end{aligned}
$$

Cent-e $\left(1,-\frac{3}{2}\right)^{k}$

$$
K=-1
$$

$$
r=\sqrt{1+\frac{9}{4}+1}=\sqrt{\frac{17}{4}}
$$

$(2,-5)$ is in $x^{2}+y^{2}-6 x+8 y+k=0$.
Find k.
Fnd tangent at $(2,-5)$

$$
\begin{gathered}
2^{2}+(-5)^{2}-6(2)+8(-5)+k=0 \\
k=23
\end{gathered}
$$

Centre,$(3,-4)$

Requred $m=-1$

$$
y+5=-1(x-2)
$$

Fnd targents from $(5,4)$ to $\quad x^{2}+y^{2}-2 x-6 y-1=0$.
Catre $(-g,-f)$ Centre $(1,3)$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-4=m(x-5) \\
y-4=m x-5 m \\
m x-y+4-5 m=0 \quad \text { to }(1,3)
\end{gathered}
$$

$$
y-4=m x-5 m
$$

$$
\begin{aligned}
a=m \quad b=-1 \quad c=4-5 m & x_{1}=1 \\
& y_{1}=3
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left|a x_{1}+b y+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& \frac{|m-3+4-5 m|}{\sqrt{m^{2}+1}}=\sqrt{11} \\
& \left(-4 m+1 \mid=\sqrt{11} \sqrt{m^{2}+1}\right. \\
& 16 m^{2}-8 m+1=11\left(m^{2}+1\right) \\
& 16 m^{2}-8 m+1=11 m^{2}+11 \\
& 5 m^{2}-8 m-10=0
\end{aligned}
$$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { Incus }
$$

Fid where $x+y=6$ and $x^{2}+y^{2}+2 x-4 y-20=0 \quad$ intersect.

$$
\begin{gathered}
x+y=6 \\
y=6-x \\
x^{2}+(6-x)^{2}+2 x-4(6-x)-20=0 \\
x^{2}+36-12 x+x^{2}+2 x-24+4 x-20=0 \\
2 x^{2}-6 x-8=0 \\
x^{2}-3 x-4=0 \\
(x-4)(x+1)=0 \\
x=4 \quad x=-1
\end{gathered}
$$

or

$$
\begin{aligned}
& x=6-y \\
& (6-y)^{2}+y^{2}+2(6-y)-4 y-20=0 \\
& 36-12 y+y^{2}+y^{2}+12-2 y-4 y-20=0 \\
& 2 y^{2}-18 y+28=0 \\
& y^{2}-9 y+14=0 \\
& (y-2)(y-7)=0 \\
& y=2 \quad y=7
\end{aligned}
$$

Fnd where $x^{2}+y^{2}-4 x-6 y-12=0$ cuts x-axis.
x-axis

$$
\begin{gathered}
y=0 \\
x^{2}-4 x-12=0 \\
(x-6)(x+2)=0 \\
x=6 \quad x=-2
\end{gathered}
$$

1s $(5,-2)$ unsude, on or outsude

$$
\begin{aligned}
& x^{2}+y^{2}-4 x+6 y-3=0 \\
& \text { Center } \quad(2,-3) \\
& \quad r=\sqrt{4+5+3}=\sqrt{16}=4
\end{aligned}
$$

Sub en ponts,

$$
\begin{array}{r}
25+4-20-12-3 \\
-6<0 \Rightarrow \text { uscde } . ~
\end{array}
$$

Fnd centre and sudus of

$$
x^{2}+y^{2}-10 x-6 y-3=0 \text {. Is }(2,1)
$$

on. uside c- outside the corcle.

$$
\begin{aligned}
& x^{2}+y^{2}+2 g x+2 f y+c=0 \\
& \text { Centre }(-g,-f) \quad r=\sqrt{g^{2}+f^{2}-c} \\
& \text { Cutre }(5,3) r=\sqrt{25+9+3} \\
&=\sqrt{37} \\
& 2^{2}+1^{2}-20-6-3<0 \Rightarrow \text { uside. }
\end{aligned}
$$

$(2,-1)$ is in $x^{2}+y^{2}+4 x-6 y+k=0$.
Fand k. Fnd tangert at $(2,-1)$.

$$
\begin{aligned}
& k=-19 \\
& x^{2}+y^{2}+4 x-6 y-19=0 \\
& \quad \text { Certer } \quad(-2,3) \\
& (2,-1) \quad(-2,3) \\
& m=\frac{3+1}{-2-2}=-1
\end{aligned}
$$

$$
y+1=-1(x-2)
$$

Fnd curle with (-2.5)
and $(6,3)$ as end pouts of a diameter.

$$
\begin{aligned}
& \text { Centre }=\text { medpout } \\
& \text { (-2.5) } \\
& \text { (6.3) } \\
& \left(\begin{array}{ll}
2 & 4 \\
h
\end{array}\right) \\
& \text { Radius = distance frem } \\
& (2,4) \text { to }(6,3) \\
& \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{4^{2}+(-1)^{2}}=\sqrt{17} \\
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-2)^{2}+(y-4)^{2}=17
\end{aligned}
$$

Fund circle centre $(3,-1)$ which cuts a chord of length 8 units on the y-axis $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
\begin{aligned}
& (x-4)^{2}+(y-k)^{2}=r^{2} \\
& (x-3)^{2}+(y+1)^{2}=r^{2} \\
& (x-3)^{2}+(y+1)^{2}=25
\end{aligned}
$$

