Rates of Change
Distance (displacement) is a function of time.

$$
\begin{aligned}
& \text { Distance }=s=f(t)=m \\
& \text { Speed }=\frac{d s}{d t}=f^{\prime}(t)=m / \mathrm{s} \\
& \text { Acceloration }=\frac{d^{2} s}{d t^{2}}=f^{\prime \prime}(t)=m / \mathrm{s}^{2}
\end{aligned}
$$

Initial $\Rightarrow t=0$
At rest $\Rightarrow \frac{d s}{d t}=0$
$s=t^{3}+6 t^{2}+5 t+7 \quad$ Ind
(1) Initial distance
(iI) speed after 2 sees
(iii) acceleration after 4 seconds.
(i) $t=0 \quad s=7 \mathrm{~m}$
(ii) $\quad s=t^{3}+6 t^{2}+5 t+7$

$$
\frac{d s}{d t}=3 t^{2}+12 t+5 \quad t=2
$$

$$
\frac{d s}{d t}=41 \mathrm{~m} / \mathrm{s}
$$

(III)

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}}= & 6 t+12 \quad t=4 \\
& 6(4)+12=36 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Distance truelled after bashes are apphed is giver by $s=18 t-t^{2}$. Find distance while at rest.

$$
\begin{aligned}
& S=18 t-t^{2} \\
& \frac{d v}{d t}=18-2 t=0 \\
& t=9 \mathrm{sec} . \\
& S=\left(8(9)-9^{2}\right. \\
&=81 \mathrm{~m}
\end{aligned}
$$

