Circle
Coracle centre $(0,0)$

Write down centre and indus of
(1) $x^{2}+y^{2}=25 \quad$ Centre $(0.0)=5$
(11) $\begin{aligned} x^{2}+y^{2}=40 \quad \text { Centre (0.0) } r & =\sqrt{40} \\ & =2 \sqrt{10}\end{aligned}$
(a) $\quad 5 x^{2}+5 y^{2}=9$

$$
x^{2}+y^{2}=\frac{9}{5} \quad \text { Cutie }(0,0)
$$

 Is $(-3,7)$ inside, on or outside $\quad x^{2}+y^{2}=47$.

$$
\begin{aligned}
&(-3)^{2}+7^{2} \\
& 9+49 \\
& 58>47 \quad \Rightarrow \text { outside }
\end{aligned}
$$

Sub in pout

$$
\begin{aligned}
& \text { Ans }<r^{2} \Rightarrow \text { inside } \\
& \text { Ans }=r^{2} \Rightarrow \text { on } \\
& \text { Ans }>r^{2} \Rightarrow \text { outside }
\end{aligned}
$$

$(2, k)$ is inside $x^{2}+y^{2}=29$.
Find range of values for k.

$$
\begin{aligned}
2^{2}+k^{2} & <29 \\
4+k^{2} & <29 \\
k^{2} & <25 \\
k^{2}-25 & <0
\end{aligned}
$$

$$
\begin{aligned}
& k^{2}-25=0 \\
& k^{2}=25 \\
& k= \pm 5 \\
& -5<k<5
\end{aligned}
$$

Name 3 pouts unicode $x^{2}+y^{2}=9$

$$
\begin{array}{cccc}
& x^{2}+y^{2}=9 & \text { Centre } & (0,0) \\
(1,0) & (0,1) & (2,0) & r=3
\end{array}
$$

Cuts axes.
Find who $x^{2}+y^{2}=64$ cuts
the x-axis.

$$
\begin{aligned}
& x \text {-axis } y=0 \\
& x^{2}=64 \\
& x= \pm 8(8,0) \quad(-8,0)
\end{aligned}
$$

Tangent at a pout.
Find tangent to $x^{2}+y^{2}=13$ at pout $(-2,3)$. Fad parallel tangent.

$$
\begin{array}{r}
\text { Centre }(0,0) \\
\sim=\sqrt{13} \\
(0,0)(-2,3) \\
m=\frac{3}{-2}
\end{array}
$$

$$
\begin{aligned}
(-2,3) & \rightarrow(0,0) \rightarrow(2 \\
& y+3=\frac{2}{3}(x-2)
\end{aligned}
$$

Fid whore $x^{2}+y^{2}=16$ cuts the x-axis. state the tangent at these pouts

Tangents four outside a circle Fund tangents from $(1,3)$ to $x^{2}+y^{2}=4$.

$$
r=2 \text { Centre }(0,0)
$$

$$
(2,0) \quad(-2,0)
$$

$$
1^{2}+3^{2}=10>4
$$

$$
\Rightarrow \text { outs. de }
$$

Line \Rightarrow

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Perpendicular distance fir $y-3=m(x-1)$ to $(0,0)$ is 2.

$$
\begin{gathered}
\frac{\left|a x_{1}+b y \cdot+c\right|}{\sqrt{a^{2}+b^{2}}} \\
y-3=m x-m \\
m x-y+3-m=0 \quad(0,0) \\
a=m \quad b=-1 \quad c=3-m \quad x_{1}=0 \quad y_{1}=0 \\
\frac{|3-m|}{\sqrt{m^{2}+1}}=2 \\
|3-m|=2 \sqrt{m^{2}+1} \\
(3-m)^{2}=4\left(m^{2}+1\right) \\
9-6 m+m^{2}=4 m^{2}+4 \\
3 m^{2}+6 m-5=0 \\
\frac{-6 \pm \sqrt{b^{2}-4 a}}{2 a}
\end{gathered}
$$

Find tangents $t_{0}^{2 a} x^{2}+y^{2}=5$ Centre $(0,0) \quad r=\sqrt{5}$

$$
\begin{aligned}
& y=m x-5 m \\
& a=m \quad m x-y-5 m=0 \\
& b=-1 c=-5 m \quad x_{1}=0 \quad y=0 \\
& \frac{\left|a x_{1}+b y+c\right|}{\sqrt{a^{2}+b^{2}}}= \\
& \frac{|-5 m|}{\sqrt{m^{2}+1}}=\sqrt{5} \\
&(-5 m \mid=\sqrt{5} \sqrt{m^{2}+1} \\
& 25 m^{2}=5\left(m^{2}+1\right) \\
& 25 m^{2}=5 m^{2}+5 \\
& 20 m^{2}=5 \\
& m^{2}=\frac{1}{4} \\
& m= \pm \frac{1}{2}
\end{aligned}
$$

$$
y=\frac{1}{2}(x-5) \text { or } y=-\frac{1}{2}(x-5)
$$

Circe centre (h, k)

Fid centre and radius of
(1) $(x-3)^{2}+(y-5)^{2}=36$

$$
\text { Centre } \quad(3,5) \quad-=6
$$

(II) $\quad(x+5)^{2}+(y-7)^{2}=49$

Centre $(-5,7) \quad r=7$
(iI)

$$
\begin{gathered}
x^{2}+(y-2)^{2}=8 \quad \text { Centre }(0,0) \\
r=\sqrt{8}
\end{gathered}
$$

$(x-3)^{2}+(y+1)^{2}=K$. Given $(2,-3)$ is
on cole. Fund
(i) K.
(ii) Tangent at $(2,-3)$

CII' Parallel tangent.

$$
\begin{array}{cc}
(2,-3) & (2-3)^{2}+(-3+1)^{2}=k \\
x & k=5
\end{array}
$$

$$
\begin{aligned}
& r=\sqrt{5} \\
& (2,-3)(3,-1) \\
& m=\frac{-1+3}{3-2}=2
\end{aligned}
$$

Required $m=-\frac{1}{2}$

$$
y+1=-\frac{1}{2}(x-3)
$$

$$
\begin{aligned}
& (2,-3) \rightarrow(3,-1) \rightarrow(4,1) \\
& y-1=-\frac{1}{2}(x-4)
\end{aligned}
$$

Fund where $(x-3)^{2}+(y+1)^{2}=25$ cuts the y-axis.

$$
\begin{array}{r}
x=0 \\
(-3)^{2}+(y+1)^{2}=25 \\
9+(y+1)^{2}=25 \\
(y+1)^{2}=16 \\
y+1=4 \\
y+1=-4 \\
y \quad y=-5 .
\end{array}
$$

